skip to main content


Search for: All records

Creators/Authors contains: "Wu, Zhenwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synchrotron spectroscopy and Density Functional Theory (DFT) are combined to develop a new descriptor for the stability of adsorbed chemical intermediates on metal alloy surfaces. This descriptor probes the separation of occupied and unoccupied d electron density in platinum and is related to shifts in Resonant Inelastic X-ray Scattering (RIXS) signals. Simulated and experimental spectroscopy are directly compared to show that the promoter metal identity controls the orbital shifts in platinum electronic structure. The associated RIXS features are correlated with the differences in the band centers of the occupied and unoccupied d bands, providing chemical intuition for the alloy ligand effect and providing a connection to traditional descriptions of chemisorption. The ready accessibility of this descriptor to both DFT calculations and experimental spectroscopy, and its connection to chemisorption, allow for deeper connections between theory and characterization in the discovery of new catalysts. 
    more » « less
  2. null (Ed.)
    Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using in situ X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5–8 times higher than monometallic Pd and selectivity to propylene of over 90%. Moreover, among the synthesized alloys, Pd 3 M alloy structures were less olefin selective than PdM alloys which were, in turn, almost 100% selective to propylene. This selectivity improvement was interpreted by changes in the DFT-calculated binding energies and activation energies for C–C and C–H bond activation, which are ultimately influenced by perturbation of the most stable adsorption site and changes to the d-band density of states. Furthermore, transition state analysis showed that the C–C bond breaking reactions require 4-fold ensemble sites, which are suggested to be required for non-selective, alkane hydrogenolysis reactions. These sites, which are not present on alloys with PdM structures, could be formed in the Pd 3 M alloy through substitution of one M atom with Pd, and this effect is suggested to be partially responsible for their slightly lower selectivity. 
    more » « less
  3. Recently, stable non-oxidative conversion of methane (NOCM) for up to 8 h with a C 2 selectivity greater than 90% has been reported over Pt–Bi/ZSM-5 at moderate temperatures (600–700 °C). In this study, we show that the structure of the bimetallic nanoparticles on Pt–Bi/ZSM-5 catalyst is similar to Pt–Bi/SiO 2 . EXAFS indicates the formation of Pt-rich bimetallic Pt–Bi nanoparticles with Pt–Bi bond distance of 2.80 Å. The XRD spectra (on SiO 2 ) are consistent with cubic, intermetallic surface Pt 3 Bi phase on a Pt core. The Pt 3 Bi structure is not known in the thermodynamic phase diagram. In all catalysts, only a small fraction of Bi alloys with Pt. At high Bi loadings, excess Bi reduces at high temperature, covering the catalytic surface leading to a loss in activity. At lower Bi loadings with little excess Bi, the Pt 3 Bi surface is effective for non-oxidative coupling of CH 4 (on ZSM-5) and propane dehydrogenation (on SiO 2 ). 
    more » « less